If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-2y-104=0
a = 7; b = -2; c = -104;
Δ = b2-4ac
Δ = -22-4·7·(-104)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-54}{2*7}=\frac{-52}{14} =-3+5/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+54}{2*7}=\frac{56}{14} =4 $
| x+11+16+13=x+24 | | x^2+0,25x-20000=0 | | 108=x-(10x/100) | | 2/3-3/2x=20/3 | | 26x+1+50=1+39x | | -4(8a-2)+8(a-4)=-72 | | 10m-15=7m-45 | | x^2+1,25x-20000=0 | | 6(x+3)-8(8-6x)=8 | | 1/x+2/4=3/4 | | -9=-3(-5b+6)+3(b-3 | | 5u+3/(4)u=54–u | | 14x+1+75=27-2 | | 14x+1+75=27+-2 | | -(r+5)-1=-26-5r | | -(r+5)-1=- | | -2+60x+45=81x+1 | | 2(b+3)=2b+6 | | 2/3(x=8)^2-66=0 | | x+0.05x=101960 | | 15x+12+10x+12=35 | | 3(x^2=2)=18 | | 4(x+6)-2(x+4)=6 | | 8x-12+3x+9=24x-18 | | 39x^2+2)=18 | | -3-9x=-4-10x | | x^2+(3x-1)^2=12 | | -11=b+9 | | 9s-(4s-5)=15s+2 | | X+7=19x= | | 10x+3=5x+45 | | 0,5x+x+1,5x=360 |